首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   53篇
  2023年   2篇
  2022年   4篇
  2021年   18篇
  2020年   15篇
  2019年   17篇
  2018年   17篇
  2017年   17篇
  2016年   30篇
  2015年   36篇
  2014年   51篇
  2013年   73篇
  2012年   89篇
  2011年   61篇
  2010年   38篇
  2009年   30篇
  2008年   52篇
  2007年   50篇
  2006年   36篇
  2005年   28篇
  2004年   29篇
  2003年   30篇
  2002年   21篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1983年   1篇
排序方式: 共有762条查询结果,搜索用时 171 毫秒
701.
The prevention of meningococcal disease may be improved by recombinant vaccines such as 4CMenB and rLP2086 that target the factor H binding protein (fHbp), an immunogenic surface component of Neisseria meningitidis present as one of three variants. Whether such vaccines decrease carriage of invasive isolates and thus induce herd immunity is unknown. We analyzed the genetic diversity and levels of expression of fHbp among 268 carriage strains and compare them to those of 467 invasive strains. fhbp gene sequencing showed higher proportions of variants 2 and 3 among carriage isolates (p<0.0001). Carriage isolates expressed lower levels of fHbp (p<0.01) but that remain high enough to predict targeting by antibodies against fHbp particularly in group B isolates belonging to the frequent hypervirulent clonal complexes in Europe and North America (cc32, cc41/44, cc269). This suggests that fHbp targeting meningococcal vaccines might reduce, at least in part, the acquisition of some hyperinvasive isolates.  相似文献   
702.
Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of “live cephalopods” became regulated within the European Union by Directive 2010/63/EU on the “Protection of Animals used for Scientific Purposes”, giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce “guidelines” and the potential contribution of neuroscience research to cephalopod welfare.  相似文献   
703.
The Capromyidae (hutias) are endemic rodents of the Caribbean and represent a model of dispersal for non-flying mammals in the Greater Antilles. This family has experienced severe extinctions during the Holocene and its phylogenetic affinities with respect to other caviomorph relatives are still debated as morphological and molecular data disagree. We used target enrichment and next-generation sequencing of mitochondrial and nuclear genes to infer the phylogenetic relationships of hutias, estimate their divergence ages, and understand their mode of dispersal in the Greater Antilles. We found that Capromyidae are nested within Echimyidae (spiny rats) and should be considered a subfamily thereof. We estimated that the split between hutias and Atlantic Forest spiny rats occurred 16.5 (14.8–18.2) million years ago (Ma), which is more recent than the GAARlandia land bridge hypothesis (34–35 Ma). This would suggest that during the Early Miocene, an echimyid-like ancestor colonized the Greater Antilles from an eastern South American source population via rafting. The basal divergence of the Hispaniolan Plagiodontia provides further support for a vicariant separation between Hispaniolan and western islands (Bahamas, Cuba, Jamaica) hutias. Recent divergences among these western hutias suggest Plio-Pleistocene dispersal waves associated with glacial cycles.  相似文献   
704.
Rad52 is a key protein in homologous recombination (HR), a DNA repair pathway dedicated to double strand breaks and recovery of blocked or collapsed replication forks. Rad52 allows Rad51 loading on single strand DNA, an event required for strand invasion and D-loop formation. In addition, Rad52 functions also in Rad51 independent pathways because of its ability to promote single strand annealing (SSA) that leads to loss of genetic material and to promote D-loops formation that are cleaved by Mus81 endonuclease. We have previously reported that fission yeast Rad52 is phosphorylated in a Sty1 dependent manner upon oxidative stress and in cells where the early step of HR is impaired because of lack of Rad51. Here we show that Rad52 is also constitutively phosphorylated in mus81 null cells and that Sty1 partially impinges on such phosphorylation. As upon oxidative stress, the Rad52 phosphorylation in rad51 and mus81 null cells appears to be independent of Tel1, Rad3 and Cdc2. Most importantly, we show that mutating serine 365 to glycine (S365G) in Rad52 leads to loss of the constitutive Rad52 phosphorylation observed in cells lacking Rad51 and to partial loss of Rad52 phosphorylation in cells lacking Mus81. Contrariwise, phosphorylation of Rad52-S365G protein is not affected upon oxidative stress. These results indicate that different Rad52 residues are phosphorylated in a Sty1 dependent manner in response to these distinct situations. Analysis of spontaneous HR at direct repeats shows that mutating serine 365 leads to an increase in spontaneous deletion-type recombinants issued from mitotic recombination that are Mus81 dependent. In addition, the recombination rate in the rad52-S365G mutant is further increased by hydroxyurea, a drug to which mutant cells are sensitive.  相似文献   
705.
Induced pluripotent stem cell derived hepatocytes (IPSC-Heps) have the potential to reduce the demand for a dwindling number of primary cells used in applications ranging from therapeutic cell infusions to in vitro toxicology studies. However, current differentiation protocols and culture methods produce cells with reduced functionality and fetal-like properties compared to adult hepatocytes. We report a culture method for the maturation of IPSC-Heps using 3-Dimensional (3D) collagen matrices compatible with high throughput screening. This culture method significantly increases functional maturation of IPSC-Heps towards an adult phenotype when compared to conventional 2D systems. Additionally, this approach spontaneously results in the presence of polarized structures necessary for drug metabolism and improves functional longevity to over 75 days. Overall, this research reveals a method to shift the phenotype of existing IPSC-Heps towards primary adult hepatocytes allowing such cells to be a more relevant replacement for the current primary standard.  相似文献   
706.
The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology.  相似文献   
707.
The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50–70 de novo single nucleotide variants (SNVs) between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs), their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.  相似文献   
708.
We present here experimental evidence that the Bacillus subtilis ywjI gene encodes a class II fructose-1,6-bisphosphatase, functionally equivalent to the fbp-encoded class III enzyme, and constitutes with the upstream gene, murAB, an operon transcribed at the same level under glycolytic or gluconeogenic conditions.Under glycolytic growth conditions, unidirectional phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate is catalyzed by the 6-phosphofructokinase (EC 2.7.1.11). Under gluconeogenic growth conditions, the opposite reaction is catalyzed by the fructose-1,6-bisphosphatase (FBPase) (EC 3.1.3.11) and is required for the synthesis of fructose-6-phosphate and derived metabolites, such as cell wall precursors. Escherichia coli possesses two FBPases: the class I FBPase, encoded by fbp, is highly similar to eukaryotic enzymes, and the class II FBPase (GlpX) (3) has homologues in nearly all prokaryotic genera but in only a few eukaryotes (a green alga, an amoeba, and a moss) and a few archaean species (of the Methanosarcina genus). Biochemical, physiological, and genetic studies allowed the characterization of a Bacillus subtilis enzyme which defined a new class of bacterial FBPases (class III) not structurally related to those previously described and found mainly in Firmicutes (5-7). The gene encoding this activity was identified and, although structurally unrelated to the E. coli class I FBPase gene, was also named fbp (8). In E. coli, the major FBPase is the class I Fbp, whereas the class II GlpX seems to play a minor role (3). In other organisms, the major or even the only FBPase belongs to the class II GlpX family: Bacillus cereus possesses two glpX-like genes and no class I or class III FBPase-encoding gene (26); in Mycobacterium tuberculosis, FBPase activity is encoded only by a glpX-like gene, which has been shown to complement an E. coli mutant lacking such activity (18); in Corynebacterium glutamicum, the only FBPase, essential for growth on gluconeogenic carbon sources, belongs to class II (19). It has been shown that a B. subtilis fbp mutant was still able to grow on substrates such as d-fructose, glycerol, or l-malate as the sole carbon source, which indicated that this mutant could bypass the FBPase reaction during gluconeogenesis (6). Random mutagenesis (ethyl methanesulfonate treatment) performed with this fbp mutant enabled the definition of a B. subtilis locus (bfd) whose additional mutation prevented growth on gluconeogenic carbon sources, but this locus had not been characterized further (7). Determination of the nucleotide sequence of the whole B. subtilis chromosome (16) led to the identification of a putative gene, ywjI, encoding a protein displaying strong homologies with GlpX family members (e.g., 54% identity and 74% similarity with GlpX from C. glutamicum). This gene has therefore been annotated glpX, encoding a class II FBPase, but such annotation has never been validated by genetic or biochemical experimental evidence. In this work, we present experimental evidence that ywjI indeed encodes a class II FBPase.  相似文献   
709.
710.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号